Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui-Min Zhang,^a Bing Tu,^a Zhi-Min Jin,^a* Zhi-Yong Wu^b and Mao-Lin Hu^c

^aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ^bMarine Drug and Food Institute, Ocean University of China, Qingdao 266003, People's Republic of China, and ^cSchool of Chemistry and Materials Science, Wenzhou University, Wenzhou, 325027, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.043 wR factor = 0.121 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cinchonidinium bis(perchlorate)

In the title crystal structure, $C_{19}H_{24}N_2O^{2+}\cdot 2ClO_4^-$, cations and anions are connected by intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, forming one-dimensional chains propagating in the the *a*-axis direction. These chains are, in turn, linked by weak $C-H\cdots O$ hydrogen bonds, forming a three-dimensional network.

Comment

The crystal structures of some cinchonidine compounds have alredy been reported, *e.g.* cinchonidinium (S)-mandelate (Gjerlov & Larsen, 1997), bis(cinchonidinium) L-tartrate dihydrate (Zhang *et al.*, 2003), cinchonidinium (R,R)-tartrate monohydrate (Ryttersgaard & Larsen, 2003) and cinchonidinium trichlorocobalt(II) (Skorska *et al.*, 2005). The molecular structure of the title compound, (I), is shown in Fig. 1.

One anion of (I) is connected to the cation through an $O-H\cdots O$ hydrogen bond and the other through an $N-H\cdots O$ hydrogen bond (Table 2). Within the cation, two weak $C-H\cdots O$ hydrogen bonds may influence the molecular confor-

Figure 1

The asymmetric unit of (I), showing 40% probability displacement ellipsoids. Dashed lines denote hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Received 28 April 2006 Accepted 5 May 2006

02614 Jin et al. \cdot C₁₉H₂₄N₂O²⁺·2ClO₄⁻

© 2006 International Union of Crystallography

All rights reserved

Figure 2

A hydrogen-bonded chain of (I) along the [100] direction. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

mation. In the crystal structure, anions and cations are linked by intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, forming one-dimensional chains running along the *a* axis (Fig. 2). These chains are, in turn, connected by weak intermolecular C-H···O hydrogen bonds, forming a threedimensional network (Fig. 3).

Experimental

Cinchonidine (1 mmol, 0.29 g) and 10% aqueous perchloric acid (2 mmol, 0.20 g) were mixed and water (10 ml) added, then heated to 373 K and stirred for half an hour. The reaction system was cooled to room temperature and colorless crystals were collected after 10 d.

Crystal data

$C_{19}H_{24}N_2O^{2+}\cdot 2ClO_4^{-}$	$V = 560.6 (2) \text{ Å}^3$
$M_r = 495.30$	Z = 1
Triclinic, P1	$D_x = 1.467 \text{ Mg m}^{-3}$
a = 6.544 (1) Å	Mo $K\alpha$ radiation
b = 7.819 (2) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 11.308 (2) Å	T = 292 (2) K
$\alpha = 88.67 \ (2)^{\circ}$	Block, colorless
$\beta = 77.03 \ (1)^{\circ}$	$0.48 \times 0.42 \times 0.42 \text{ mm}$
$\gamma = 83.85 \ (2)^{\circ}$	
Data collection	

Siemens P4 diffractometer ω scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.850, T_{\max} = 0.869$ 4392 measured reflections

4392 independent reflections 3864 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 26.0^{\circ}$ 3 standard reflections every 97 reflections intensity decay: 4.1%

Part of the crystal structure of (I), with hydrogen bonds shown as dashed lines.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0806P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.043$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.121$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.06	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
4390 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
302 parameters	Extinction correction: SHELXL97
H atoms treated by a mixture of	Extinction coefficient: 0.059 (7)
independent and constrained	Absolute structure: Flack (1983),
refinement	2195 Friedel pairs
	Flack parameter: -0.01 (6)

Table 1

Selected geometric parameters (Å, °).

Cl1-O2	1.416 (3)	N2-C17	1.497 (4)
Cl2-O9	1.437 (3)	C8-C9	1.363 (5)
Cl2-O6	1.443 (3)	C10-C11	1.546 (4)
O1-C10	1.422 (4)	C14-C18	1.514 (5)
N1-C9	1.317 (5)	C18-C19	1.269 (6)
O3-Cl1-O2	111.0 (2)	C2-C1-C6	121.9 (3)
O7-Cl2-O9	110.3 (3)	N1-C9-C8	120.3 (3)
O7-Cl2-O6	113.1 (3)	O1-C10-C11	108.9 (2)
O9-Cl2-O6	106.7 (2)	N2-C11-C10	112.8 (2)
C9-N1-C1	123.5 (3)	N2-C15-C14	109.8 (2)
C17-N2-C15	109.3 (2)	C19-C18-C14	124.2 (4)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O1−H1 <i>O</i> ···O2	0.82 (4)	2.08 (4)	2.889 (5)	167 (4)
$N1 - H1N \cdots O6$	0.85 (3)	2.04 (3)	2.867 (4)	163 (3)
$N2-H2N\cdots O4^{i}$	0.86 (3)	2.05 (3)	2.900 (4)	175 (3)
C8−H8···O1	0.93	2.42	2.760 (6)	102
C9−H9···O2 ⁱⁱ	0.93	2.57	3.448 (5)	158
C9−H9···O9	0.93	2.58	3.192 (5)	124
C12−H12B····O1	0.97	2.39	2.856 (4)	109
$C14-H14\cdots O8^{iii}$	0.98	2.54	3.402 (3)	147
$C17 - H17A \cdots O1$	0.97	2.48	3.116 (5)	123

Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z; (iii) x - 1, y - 1, z + 1.

H atoms bonded to O and N atoms were located in difference Fourier maps and refined isotropically with O–H and N–H distances restrained to 0.82 (1) and 0.86 (1) Å, respectively. All other H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 (aromatic and alkene), 0.97 (methyl) and 0.98 Å (methine), with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm parent atom)$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

- Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Gjerlov, A. B. & Larsen, S. (1997). Acta Cryst. B53, 708–718.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Ryttersgaard, C. & Larsen, S. (2003). Acta Cryst. E59, o1715-o1716.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Skorska, A., Stadnicka, K. & Oleksyn, B. J. (2005). Chirality, 17, 73-78.
- Zhang, H., Lin, Z.-Y., Zhou, Z.-H. & Ng, S. W. (2003). Acta Cryst. E59, o183– 0185.