Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hui-Min Zhang, ${ }^{\text {a }}$ Bing Tu, ${ }^{\text {a }}$ Zhi-Min Jin, ${ }^{\text {a } *}$ Zhi-Yong Wu ${ }^{\text {b }}$ and Mao-Lin Hu ${ }^{\text {c }}$

${ }^{\text {a }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ${ }^{\text {b }}$ Marine Drug and Food Institute, Ocean University of China, Qingdao 266003, People's Republic of China, and ${ }^{\text {'S School }}$ of Chemistry and Materials Science, Wenzhou University, Wenzhou, 325027, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.043$
$w R$ factor $=0.121$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Cinchonidinium bis(perchlorate)

In the title crystal structure, $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}^{2+} \cdot 2 \mathrm{ClO}_{4}^{-}$, cations and anions are connected by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming one-dimensional chains propagating in the the a-axis direction. These chains are, in turn, linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional network.

Comment

The crystal structures of some cinchonidine compounds have alredy been reported, e.g. cinchonidinium (S)-mandelate (Gjerlov \& Larsen, 1997), bis(cinchonidinium) L-tartrate dihydrate (Zhang et al., 2003), cinchonidinium (R, R)-tartrate monohydrate (Ryttersgaard \& Larsen, 2003) and cinchonidinium trichlorocobalt(II) (Skorska et al., 2005). The molecular structure of the title compound, (I), is shown in Fig. 1.

(I)

One anion of (I) is connected to the cation through an $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and the other through an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2). Within the cation, two weak C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds may influence the molecular confor-

Figure 1

The asymmetric unit of (I), showing 40% probability displacement ellipsoids. Dashed lines denote hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Figure 2
A hydrogen-bonded chain of (I) along the [100] direction. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
mation. In the crystal structure, anions and cations are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming one-dimensional chains running along the a axis (Fig. 2). These chains are, in turn, connected by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a threedimensional network (Fig. 3).

Experimental

Cinchonidine ($1 \mathrm{mmol}, 0.29 \mathrm{~g}$) and 10% aqueous perchloric acid $(2 \mathrm{mmol}, 0.20 \mathrm{~g})$ were mixed and water $(10 \mathrm{ml})$ added, then heated to 373 K and stirred for half an hour. The reaction system was cooled to room temperature and colorless crystals were collected after 10 d .

Figure 3
Part of the crystal structure of (I), with hydrogen bonds shown as dashed lines.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.121$
$S=1.06$
4390 reflections
302 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0806 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \operatorname{SHELXL} 97 \\
& \text { Extinction coefficient: } 0.059(7) \\
& \text { Absolute structure: Flack }(1983), \\
& \quad \text { 2195 Friedel pairs } \\
& \text { Flack parameter: }-0.01(6)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{O} 2$	$1.416(3)$	$\mathrm{N} 2-\mathrm{C} 17$	$1.497(4)$
$\mathrm{Cl} 2-\mathrm{O} 9$	$1.437(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.363(5)$
$\mathrm{Cl} 2-\mathrm{O} 6$	$1.443(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.546(4)$
$\mathrm{O} 1-\mathrm{C} 10$	$1.422(4)$	$\mathrm{C} 14-\mathrm{C} 18$	$1.514(5)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.317(5)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.269(6)$
$\mathrm{O} 3-\mathrm{Cl} 1-\mathrm{O} 2$	$111.0(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$121.9(3)$
$\mathrm{O} 7-\mathrm{Cl} 2-\mathrm{O} 9$	$110.3(3)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$120.3(3)$
$\mathrm{O} 7-\mathrm{Cl} 2-\mathrm{O} 6$	$113.1(3)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11$	$108.9(2)$
$\mathrm{O} 9-\mathrm{Cl} 2-\mathrm{O} 6$	$106.7(2)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 10$	$112.8(2)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1$	$123.5(3)$	$\mathrm{N} 2-\mathrm{C} 15-\mathrm{C} 14$	$109.8(2)$
$\mathrm{C} 17-\mathrm{N} 2-\mathrm{C} 15$	$109.3(2)$	$\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 14$	$124.2(4)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O} 2$	$0.82(4)$	$2.08(4)$	$2.889(5)$	$167(4)$
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 6$	$0.85(3)$	$2.04(3)$	$2.867(4)$	$163(3)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.86(3)$	$2.05(3)$	$2.900(4)$	$175(3)$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 1$	0.93	2.42	$2.760(6)$	102
$\mathrm{C} 9-\mathrm{H} 9 \cdots 2^{\mathrm{ii}}$	0.93	2.57	$3.448(5)$	158
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 9$	0.93	2.58	$3.192(5)$	124
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O} 1$	0.97	2.39	$2.856(4)$	109
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 8^{\text {iii }}$	0.98	2.54	$3.402(3)$	147
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{O} 1$	0.97	2.48	$3.116(5)$	123

[^1]| Crystal data | |
| :--- | :--- |
| $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}^{2+} \cdot 2 \mathrm{ClO}_{4}{ }^{-}$ | $V=560.6(2) \AA^{3}$ |
| $M_{r}=495.30$ | $Z=1$ |
| Triclinic, $P 1$ | $D_{x}=1.467 \mathrm{Mg} \mathrm{m}^{-3}$ |
| $a=6.544(1) \AA$ | Mo $\mathrm{K} \alpha$ radiation |
| $b=7.819(2) \AA$ | $\mu=0.34 \mathrm{~mm}^{-1}$ |
| $c=11.308(2) \AA$ | $T=292(2) \mathrm{K}$ |
| $\alpha=88.67(2)^{\circ}$ | Block, colorless |
| $\beta=77.03(1)^{\circ}$ | $0.48 \times 0.42 \times 0.42 \mathrm{~mm}$ |
| $\gamma=83.85(2)^{\circ}$ | |
| | |
| Data collection | |
| Siemens P 4 diffractometer | 4392 independent reflections |
| ω scans | 3864 reflections with $I>2 \sigma(I)$ |
| Absorption correction: ψ scan | $\theta_{\text {max }}=26.0^{\circ}$ |
| (North et al., 1968$)$ | 3 standard reflections |
| $T_{\text {min }}=0.850, T_{\text {max }}=0.869$ | every 97 reflections |
| 4392 measured reflections | intensity decay: 4.1% |
| | |

Siemens P4 diffractometer ω scans
Absorption correction: ψ scan
$T_{\text {min }}=0.850, T_{\text {max }}=0.869$
4392 measured reflections
$V=560.6(2) \AA^{3}$
$D_{x}=1.467 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.48 \times 0.42 \times 0.42 \mathrm{~mm}$

organic papers

H atoms bonded to O and N atoms were located in difference Fourier maps and refined isotropically with $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances restrained to 0.82 (1) and 0.86 (1) \AA, respectively. All other H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 (aromatic and alkene), 0.97 (methyl) and $0.98 \AA$ (methine), with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gjerlov, A. B. \& Larsen, S. (1997). Acta Cryst. B53, 708-718.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ryttersgaard, C. \& Larsen, S. (2003). Acta Cryst. E59, o1715-o1716.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Skorska, A., Stadnicka, K. \& Oleksyn, B. J. (2005). Chirality, 17, 73-78.
Zhang, H., Lin, Z.-Y., Zhou, Z.-H. \& Ng, S. W. (2003). Acta Cryst. E59, o183o185.

[^0]: © 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (i) $x-1, y, z$; (ii) $x, y+1, z$; (iii) $x-1, y-1, z+1$.

